Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(6): e0180095, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662111

RESUMO

Amaranthus tuberculatus is a troublesome weed in corn and soybean production systems in Midwestern USA, due in part to its ability to evolve multiple resistance to key herbicides including 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we have investigated the mechanism of resistance to mesotrione, an important chemical for managing broadleaf weeds in corn, in a multiple herbicide resistant population (NEB) from Nebraska. NEB showed a 2.4-fold and 45-fold resistance increase to mesotrione compared to a standard sensitive population (SEN) in pre-emergence and post-emergence dose-response pot tests, respectively. Sequencing of the whole HPPD gene from 12 each of sensitive and resistant plants did not detect any target-site mutations that could be associated with post-emergence resistance to mesotrione in NEB. Resistance was not due to HPPD gene duplication or over-expression before or after herbicide treatment, as revealed by qPCR. Additionally, no difference in mesotrione uptake was detected between NEB and SEN. In contrast, higher levels of mesotrione metabolism via 4-hydroxylation of the dione ring were observed in NEB compared to the sensitive population. Overall, the NEB population was characterised by lower levels of parent mesotrione exported to other parts of the plant, either as a consequence of metabolism in the treated leaves and/or impaired translocation of the herbicide. This study demonstrates another case of non-target-site based resistance to an important class of herbicides in an A. tuberculatus population. The knowledge generated here will help design strategies for managing multiple herbicide resistance in this problematic weed species.


Assuntos
Amaranthus/efeitos dos fármacos , Cicloexanonas/farmacologia , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Amaranthus/genética , Amaranthus/metabolismo , Transporte Biológico , Radioisótopos de Carbono/metabolismo , Duplicação Gênica , Genes de Plantas , Nebraska , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
2.
Theor Appl Genet ; 128(3): 445-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25504539

RESUMO

KEY MESSAGE: The mutant that originally defined the shrunken - 2 locus of maize is shown here to be the product of a complex chromosomal rearrangement. The maize shrunken-2 gene (sh2) encodes the large subunit of the heterotetrameric enzyme, adenosine diphosphate glucose pyrophosphorylases and a rate-limiting enzyme in starch biosynthesis. The sh2 gene was defined approximately 72 years ago by the isolation of a loss-of-function allele conditioning a shrunken, but viable seed. In subsequent years, the realization that this allele, termed zsh2-R or sh2-Reference, causes an extremely high level of sucrose to accumulate in the developing seed led to a revolution in the sweet corn industry. Now, the vast majority of sweet corns grown throughout the world contain this mutant allele. Through initial Southern analysis followed by genomic sequencing, the work reported here shows that this allele arose through a complex set of events involving at least three breaks of chromosome 3 as well as an intra-chromosomal inversion. These findings provide an explanation for some previously reported, unexpected observations concerning rates of recombination within and between genes in this region.


Assuntos
Alelos , Glucose-1-Fosfato Adenililtransferase/genética , Recombinação Genética , Zea mays/genética , Cromossomos de Plantas , DNA de Plantas/genética , Rearranjo Gênico , Genes de Plantas , Biblioteca Genômica , Análise de Sequência de DNA , Zea mays/enzimologia
3.
J Agric Food Chem ; 57(8): 3156-63, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19368351

RESUMO

In March 2005, U.S. authorities informed the European Commission of the inadvertent release of unauthorized maize GM event Bt10 in their market and subsequently the grain channel. In the United States measures were taken to eliminate Bt10 from seed and grain supplies; in the European Union an embargo for maize gluten and brewer's grain import was implemented unless certified of Bt10 absence with a Bt10-specific PCR detection method. With the aim of assessing the validity of the Bt10 detection method, an in-depth analysis of the molecular organization of the genetic modification of this event was carried out by both the company Syngenta, who produced the event, and the European Commission Joint Research Centre, who validated the detection method. Using a variety of molecular analytical tools, both organizations found the genetic modification of event Bt10 to be very complex in structure, with rearrangements, inversions, and multiple copies of the structural elements (cry1Ab, pat, and the amp gene), interspersed with small genomic maize fragments. Southern blot analyses demonstrated that all Bt10 elements were found tightly linked on one large fragment, including the region that would generate the event-specific PCR amplicon of the Bt10 detection method. This study proposes a hypothetical map of the insert of event Bt10 and concludes that the validated detection method for event Bt10 is fit for its purpose.


Assuntos
Proteínas de Bactérias/genética , DNA de Plantas/análise , DNA Recombinante/análise , Endotoxinas/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética , Zea mays/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/análise , Southern Blotting , Endotoxinas/análise , Europa (Continente) , Biblioteca Gênica , Proteínas Hemolisinas/análise , Legislação sobre Alimentos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...